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REGARDING THE ARTICLE BY B. A. LUGOVTSOV "DETERMINATION 

OF THE MAIN FLOW PARAMETERS IN A SWIRL SPRAYER 

BY MEANS OF CONSERVATION LAWS" [i] 

G. Yu. Stepanov 

B. A. Lugovtsov examined the flow of an ideal incompressible fluid through a swirl 
sprayer with a cylindrical outlet. Figure i presents a sketch of the nozzle, with slight mod- 
ifications from the unit depicted in Fig. 3 of [I]. Walls I-i and 2-2 are infinitely dis- 
tant. The twisting of the flow is of a potential nature (ue = F/(2~r), F = const), the twist 
parameter A = RF/(2Q) = const, and the free surface of the hollow core of the vortex is mono- 
tonic (without standing waves). The pressure P2 = const = 0 in the meridional section. 

We use the Bernoulli integral (incorrectly referred to in [i] as the energy integral) 
on the free surface at z = -~ and z = 

.~ 2 9 

to obtain the discharge coefficient p = Q/(~R2 2~2B) and Rl - RI/R = A~ as functions of A and 
R2 = R=/R. The second of these functions is shown by the solid curves in Fig. 2. However, 
single-valued dependences of ~, RI, and R2 on A are seen in experiments. In Figs. 2 and 4, 
V represents maxima on the curves. 

G. N. Abramovich in 1943 and (independently) J. Taylor in 1948 proposed that a flow 
with a maximum discharge coefficient p(R2) is realized for each specified parameter A [prin- 
ciple of maximum discharge (PMD)].* Here, 

As is known from the hydraulic theory of spillways with a wide ramp and the linear prob- 
lem of the fracture of a dam on a horizontal base, the PMD corresponds to the critical flow 
and follows from the continuity and Euler equations. It can be shown by analogy that if we 
assume that the thickness h of the layer of liquid in the nozzle outlet is small and the 
surface of the core of the vortex approximates the cylindrical surface of the outlet in the 
outlet section, the flow should be critical and have the Froude number 

r r  - -  ~ .  / 1. / 1 ~ / R  = 1 + 0 (~ /~ ) ,  7~ ------ h /R  ------- t - -  7~ = (2A) - ~  + 0 (A-4/~),  

which for the specified value of A corresponds (to within quantities of the order of ~s/2) 
to the maximum discharge coefficient p. 

For fairly large, realistic twist parameters (A _> 2), use of the PMD in the hydraulic 
approximation has solid theoretical support and is backed by numerous experimental studies 
and is clearly the main technique employed in the design of centrifugal nozzles, various 
cyclone units, and other pieces of equipment whose operation involves swirling of the flow 
(for an example, see [2, Sec. 33; 3, pp. 90-94]). 

*In Declaration No. 389 on 10.18.90, the State Commission on Inventions recognized G. N. 
Abramovich, L. A. Klyachko, I. I. Novikova, and V. I. Skobelkina as having discovered the 
"Law of fluid discharge in a swirled flow," in January of 1948. 
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However, Lugovtsov considers the PMD to be unsubstantiated and even incorrect and as- 
serts that the main parameters of the flow through a centrifugal nozzle of the given design 
can be determined unambiguously if, along with the Bernoulli integral, the investigator uses 
the "law of conservation of momentum" (theorem on the change of momentum) in a projection 
on the z axis (Eqs. (15) in [i]). The result is actually a single-valued dependence of RI = 
A~ on R2. This dependence is represented by circles in Fig. 2 for different values of A. 
The relation just referred to differs markedly from the relation constructed by Abramovich 
(the solid line passing through the maxima of D(R2)). 

In constructing Eq. (15), Lugovtsov assumed that "the flow is a potential flow, except 
for the region with closed streamlines which forms on the interior of the nozzle edge, where 
the flow structure does not affect subsequent discussion" [I, p. 233]. This view proved to be 
erroneous. A suction force exists at sharp edges in a continuous potential flow, and this 
force should be incorporated into Eq. (15). It is absent in the alternative jet potential 
flow. The latter flow separates from the edges of the nozzle, forming a jet with free 
boundaries (Fig. 3) under the pressure p = P2 = 0. In the presence of twisting (A ~ 0), a 
hollow core characterized by negative pressure P3 = Pl < P2 should extend along the entire 
axis of this jet. Such a flow clearly cannot be realized in a centrifugal nozzle, and only 
in the absence o~ swirling (A = 0) do we obtain the familiar flow in a Borda mouthpiece 
(D = 1/2, R2 = /2/2) - the only point for which the solution in [i] has a physical meaningr 

The flow in the nozzle depicted in Fig. 1 can always be calculated if we omit the re- 
quirement that the entire flow be a potential flow, ignore friction on the walls of the 
nozzle, and adopt an additional hypothesis on the distribution of velocity at the outlet of 
the nozzle (z = ~). Similar solutions, used mainly in connection with the theorem of momen- 
tum change, have long been known. Here, it will be sufficient to recall the problem of a 
sudden expansion of the flow in a cylindrical channel or the problem of hydraulic jumps. 
More complicated examples can be found in [2, Secs. 32, 52, 53; 3, pp. 36, 50, 76, 97-102]. 

We will assume that after separation at the inlet edges of the nozzle, the flow re- 
attaches to its wall and, due to a viscosity that is as low as is desired, moves uniformly 
through the channel (Vz(r) = const). However, the potential twist F = 2~rv~ = const is con- 
served along the entire flow. This entails a reduction the Bernoulli constant, B 2 < BI ~! B. 
Then we can easily use the momentum change theorem to find the dependence of RI = Ag and 
B2/B I s A and R2- These dependences are shown by the solid lines in Fig. 2. The minima 
B2/BI(R 2) coincide with the maxima RI(R 2) [or D(r2)], which can be considered additional 
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proof of thePMD; the subseqeunt increase in R2 corresponds to the origination of a reverse 
hydraulic pump!in the nozzle (a pseudo shock wave), which is precluded by the second law of 
thermodynamics. The curves are drawn to the points B2/B I = i, which correspond to the 
soltuion in [i]. 

The hypothesis of conservation of the potential swirl is valid for a low-viscosity 
fluid, since Vz'(r) >> v~'(r) aftez separation at the edges. However, strictly speaking, 
the effect of viscosity should be _o make the incoming flow more like rigid-body motion 
(RBM) with V ~ = ~r. If we ignore the friction on the walls of the nozzle, we can find angu- 
lar velocity e from the integral law of conservation of momentum relative to the z axis. 
(In principle, the effect of friction on the walls of the nozzle may be reduced significant- 

ly by allowing its free rotation about the z axis.) Again using the theorem on the change 
in momentum along the z axis, we find the relation Ag(~R I) corresponding to RMB at the noz- 
zle outlet (Fig. 4). It is worth noting that, in contrast to the previous case (see Fig. 
2), for all A = const > 0 and R2 = 0, the discharge coefficient p > 0. In other words, 
the effect of viscosity is to increase ~ for the given A and R2- 

Minimum discharge regimes (~(R2) = max) exist only when the flow is subjected to a 
sufficiently large twist (in the present case, when A e 1/2). This fact was established 
theoretically in 1985 for turbulent flows by Gol'dshtik (see [3, p. 178]). At small A, 
there is no empty core at the outlet of the nozzle, pressure in the core is no longer equal 
to P2, and the problem becomes indeterminate. 

Figure 5 compares all of the above-discussed results in the form of the dependence of 
and R2 on the inverse twist of the flow l/A: ABR denotes the PMD of Abramovich; LUG de- 

notes the calculation by Lugovtsov, PT denotes the potential twist, and RBM denotes rigid- 
body motion. 

The highest values of p are obtained for the PMD, the lowest for the LUG. For large 
twists (small l/A), all of the calculations give roughly the same results within the ex- 
perimental error. More indicative are the values of the radius R2 of the core of the out- 
let. The values of this quantity are the same for ABR and PT, while the calculations 
in [i] yield unrealistically larger values of R2; the RBM R2 nearly coincides with the val- 
ue of this quantity from the ABR and PT in the case of large twists; the RBM core disappears 
at A ~ 1/2. In the general case, the published experimental values of R2 are either above 
or below the ABR curve for R2. (It should be noted that in Fig. 2 of [I], three was a ten- 
dency to use a single series of measurements; with allowance for the errors of these mea- 
surements, they agree in equal measure with the LUG R2 and the ABR R2.) 

It should be noted that the use of integral theorems of mechanics alone is insufficient 
to solve the problem of a centrifugal nozzle in the completely nonlinear formulation. They 
must be augmented by some kind of heuristic conditions of nonambiguity. In all of the 
schemes examined above, we made the important assumption that the flow became cylindrical 
at the outlet (r = R 2 = const). Also, Lugovtsov [i] used the physically incorrect condi- 
tion B 2 = BI; all of the other relations in Fig. 5 correspond to the maximum discharge. 

Thus, the "exact" solution in [i] should be considered incorrect, and the doubts cast 
on the reliability of the PMD are unjustified. 
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PRINCIPLE OF MAXIMUM DISCHARGE 

B. A. Lugovtsov 

It was shown in [i] that discharge in a swirl sprayer with a Borda mouthpiece is 
based on conservation laws and does not agree with the value established by means of the 
PMD. This conclusion casts doubt on the overall validity of the PMD for determining flow 
parameters in centrifugal nozzles, spillways, and similar flow channels. 

Stepanov (see [2]) asserts that the results presented in [i] were erroneous. However, 
this was actually not the case that was made. For example, it was stated the the flow 
scheme examined in [i] was erroneous. Without proving this, the author then proceeds to 
consider a different scheme which bears no relationship to the flow in a swirl sprayer. 

Stepanov writes: "A suction force exists at sharp edges in a continuous potential 
flow, and this force should be incorporated into Eq. (15)." However, in [i] the object 
study was not a continuous potential flow, but a potential flow with a closed separation 
zone (region) which arose at the sharp inside edge of a cylindrical nozzle. The structure 
of the flow in this region is determined solely by the requirement that the velocity be 
finite and, thus, that there be no suction force. The flow structure in a closed separation 
region cannot be determined unambiguously within the model of an ideal incompressible fluid. 
This fact, however, does not preclude the effective use of conservation laws. 

Stepanov goes on to write that "As is known from the hydraulic theory of spillways with 
a wide ramp...the PMD corresponds to the critical flow and follows from the Euler equation." 
This statement is accurate only in the sense that, under certain conditions and in certain 
cases, the PMD makes it possible to approximately determine flow parameters. However, it 
is possible to cite numerous examples where the PMD gives erroneous results for flows in 
spillways and similar channels. 

Let us examine the flow in the spillway depicted in Fig. i. Discharge across an infini- 
tesimally thin horizontal ramp OC occurs from an infinitely deep reservoir with a 
quiescent liquid. Meanwhile at an infinitely distant point A on the free surface, 
the level of the quiescent liquid is no greater than the level H of the ramp 
OC. Within the framework of the model of an ideal incompressible fluid, it is nat- 
ural to suggest that the flow is a potential flow except for a closed separation region 
which develops in the neighborhood of the sharp edge O. There is no suction force present 
(the boundary streamline of the separation zone has a horizontal tangent at point O). The 
structure of the flow in this region is unimportant to the subsequent discussion. Uniform 
flow is presumed to take place at infinity above the ramp. The discharge down such a spill- 
way can be found by means of the laws of conservation of mass, momentum, and energy. As a 
result, we have 

2 HVF*,  
Q = uh. =-:J--V3 u = gH,  h = - - g - H .  

If we use the PMD, we find that 

2 -:ff 2 2 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 4, pp. 105-106, July-August, 1991. Original article submitted March 23, 1990. 

0021-8944/91/3204-0563512.50 �9 1992 Plenum Publishing Corporation 563 


